代表性科研成果
■ 主要科研论文
[1] A.R. Liu, H.W. Lu, J.Y. Fu, et al. (2017). Analytical and experimental studies on out-of-plane dynamic instability of shallow circular arch based on parametric resonance. Nonlinear Dynamics, 2017, 87(1):677-694.
[2] A.R. Liu, Y.H. Huang, J.Y. Fu, et al. (2015). Experimental research on stable ultimate bearing capacity of leaning-type arch rib systems. Journal of Constructional Steel Research, 114:281-292.
[3] A. Liu, H.W. Lu, J.Y. Fu, et al. (2017). Lateral-torsional buckling of fixed circular arches having a thin-walled section under a central concentrated load. Thin-Walled Structures, 2017, 118(2017):46-55.
[4] A.R. Liu, C.H. Liu, J.Y. Fu, et al. (2017). A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables. International Journal of Structural Stability & Dynamics, 2017, 17(7):1750076.
[5] A.R. Liu, M.A. Bradford, Y.L. Pi. (2017) In-plane nonlinear multiple equilibria and switches of equilibria of pinned–fixed arches under an arbitrary radial concentrated load. Archive of Applied Mechanics, 1-20.
[6] A.R. Liu, Z.C. Yang, H.W. Lu, et al. (2017). Experimental and analytical investigation on the in-plane dynamic instability of arches owing to parametric resonance. Journal of Vibration & Control, (1):107754631772621.
[7] Y.Q. Huang, A.R. Liu, Y.L. Pi Y, et al. (2017). Assessment of lateral dynamic instability of columns under an arbitrary periodic axial load owing to parametric resonance. Journal of Sound & Vibration, 395(2017):272-293.
[8] H. Jiang, Z. Fang, A.R. Liu, et al. (2016). Interface shear behavior between high-strength precast girders and lightweight cast-in-place slabs. Construction & Building Materials, 128(2016):449-460.
[9] J. Deng, A.R. Liu A, Q. Yu, et al. (2016). Seismic performances of steel reinforced concrete bridge piers. Steel & Composite Structures, 2016, 21(3):661-677.
[10] H. Jiang, Y. Chen, A.R. Liu A, et al.(2016). Effect of high-strength concrete on shear behavior of dry joints in precast concrete segmental bridges. Steel & Composite Structures, 2016, 22(5):1019-1038.
[11] Y.L. Pi , M.A. Bradford, A.R. Liu. (2016). Nonlinear Equilibrium and Buckling of Fixed Shallow Arches Subjected to an Arbitrary Radial Concentrated Load. International Journal of Structural Stability & Dynamics, 17(8):1750082.
[12] J. Deng, A.R. Liu, P. Huang, et al. (2016). Interfacial mechanical behaviors of RC beams strengthened with FRP. Structural Engineering & Mechanics, 2016, 58(3):577-596.
[13] H. Jiang, Q. Cao, A.R. Liu A, et al. (2016). Flexural behavior of precast concrete segmental beams with hybrid tendons and dry joints. Construction & Building Materials, 110(2016):1-7.
[14] J. Deng, Z. Ma, A.R. Liu, et al. (2017). Seismic performance of reinforced concrete bridge columns subjected to combined stresses of compression, bending, shear, and torsion. Journal of Bridge Engineering, 22(11):04017099.
[15] J. Deng, Z. Ma, A.R. Liu, et al. (2017) Seismic performance of composite column with double plastic hinges. Composite Structures, 2017.
[16] Y.H. Huang, A.R. Liu, J.Y. Fu, et al. (2017).Experimental and numerical investigations of the structural behavior of CFST trusses with interfacial imperfection, Journal of Constructional Steel Research, 2017.
[17] Z. F. Zhang, J. W. Pan, J. Y. Fu, et al. (2017). Optimization of long span portal frames using spatially distributed surrogates. Steel and Composite Structures. 24(2):227-237.
[18] J. Y. Fu, Q. X. Zheng, J. R. Wu, et al. (2016).Wind induced inter-story drift analysis and equivalent static wind load for multiple targets of tall buildings. The Structural Design of Tall Special Buildings. 25(6):297-321.
[19] A. Xu, W. X. Sun, R. H. Zhao, et al. (2016). Lateral drift constrained structural optimization of an actual supertall building acted by wind load.The Structural Design of Tall Special Buildings. (published online)
[20] J. Y. Fu, Q. X. Zheng, J. R. Wu, et al. (2015).Full-scale tests of wind effects on a long span roof structure. Earthquake Engineering and Engineering Vibration. 14(2):361-372.
[21] T. Deng, X. F. Yu, Z. N. Xie (2015). Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings. Wind and Structures. 21(3):331-352.
[22] A. Xu, Z.N. Xie, M. Gu, et al. (2015).Amplitude dependency of damping of tall structures by the random decrement technique. Wind and Structures. 21(2):159-182.
[23] J. Y. Fu, Y. Gao, J. R. Wu, et al. (2014). Wind effects on a long span steel roof structure: numerical simulation and equivalent static wind loads. Journal of Vibroengineering. 17(5):2572-2590.
[24] A. Xu, J. R. Wu, R. H. Zhao (2014). Wavelet-transform-based damping identification of a super-tall building under strong wind loads. Wind and Structures. 19(4):353-370.
[25] A. Xu,Z. N. Xie,J. Y. Fu,et al. (2014).Evaluation of wind loads on super-tall buildings from field-measured wind-induced acceleration response. Structural Design of Tall and Special Buildings. 23(9):641-663.
[26] Y. Q. Huang, L. Zhong, J. Y. Fu (2014). Wind-induced vibration and equivalent wind load of double-layer cylindrical latticed shells. Journal of Vibroengineering. 16(2):1063-1078.
[27] J. Y. Fu, J. R. Wu, A. Xu, et al. (2012).Full-scale measurements of wind effects on Guangzhou West Tower. Engineering Strucutures. 35(1):120-139.
[28] M. Ye; X.X Chen, et al. (2016). Time variant natural frequencies of a roadway bridge under Stochastic vehicle flow. Journal of Vibroengineering. 18(8):64-77.
[29] M. Ye, B.X. Cao, Y.L. Pi,et al.(2015). Field measurement, analysis and protection for the vibratin of an acient ruin induced railway. Journal of VIbroengineering, 17(4): 2049-2065Mao Ye, Yin pei Pia and Min Ren . Seismic Behavior of Reinforced Concrete Column with Distributed-Steel Bar: Experimental and Nonlinear FE Analysis. Structural Engineering and Mechanics. 2013,47(6 ):741-756
[30] R.H. Zhao, A. Xu, W. X. Sun,et al.(2017). Model shape correction method for high-frequency force balance technique. Journal of Vibroengineering. 19 (3): 1665-1679.
[31] Y.H. Huang, J.Y. Fu, R.H. Wang,et al.(2017)New method for identifying internal forces of hangers based on form-finding theory of suspension cable. ASCE-Journal of Bridge Engineering. 73 (8):803-813.
[32] Y. H. Huang, J.Y Fu, R. H Wang,et al.(2015). Unified Practical Formulas for Vibration-Based Method of Cable Tension Estimation. Advances in Structural Engineering.18(3):405-422.
[33] Y. H. Huang, J.Y. Fu, R.H. Wang,et al. (2014), Practical formula to calculate tension of vertical cable with hinged-fixed conditions based on vibration method, Journal of Vibroengineering. 16(2):997-1009.
[34] Y. H. Huang,R.H. Wang, S.B. Zhang, et al.(2013). Experimental Study on the Welding Residual Stresses of Integral Joint Using Full-Scale Joint Model of a Steel Truss Bridge, Advances in Structural Engineering, 16(10):1719-1727
[35] Y.H. Huang, R.H. Wang, J.H. Zou, et al. (2010). Finite element analysis and experimental study on HSFG connections in steel bridges, Journal of Constructional Steel Research, 66(6):803-815.
[36] R. Rao, Z.F. Zhang, Q. Gan, et al. (2015). A proposed model for creep in mass concrete under variable ambient conditions, Materials Research Innovations, 19(s2):174-180
[37] Y. Ma, G. Ye, J. Hu. (2017) Micro-mechanical properties of alkali-activated fly ash evaluated by nanoindentation. Construction and Building Materials, 147: 407-416.
[38] Y. Ma, G. Ye. (2015) The shrinkage of alkali activated fly ash. Cement and Concrete Research, 68: 75-82.
■ 知识产权
[1] 国家发明专利:一种中承式单索面拱桥的加固结构,专利号:ZL 201110381853[1].0
[2] 国家发明专利:一种单索面斜拉桥的加固结构,专利号:ZL 201110381875.7
[3] 国家发明专利:一种制备上下电极式导电混凝土板用电极网张拉装置,专利号:ZL 201410718482.4
[4] 国家发明专利:制备室内采暖用上下奠基石导电混凝土板的装置及方法,专利号:ZL201410717985.X
[5] 国家发明专利:含有钢管混凝土柱的高层建筑框架结构优化设计方法专利号:ZL201510268993.5
[6] 国家发明专利:一种轻型房屋结构的装配式梁柱连接方法,专利号:ZL201610156040.4
[7] 国家发明专利:一种轻型房屋结构的装配式板基础,专利号:ZL201510676977.X
[8] 实用新型专利:制备室内采暖用上下电极式电极式导电混凝土板的装置,专利号:ZL201420743217.7
[9] 国家发明专利:隔震系统,专利号:ZL 201510677070.5
[10] 国家发明专利:隔震支座,专利号:ZL 201510395725.X
[11] 实用新型专利:一种无台身坐板式桥台,专利号:ZL 2015 2 0620331.5
[12] 实用新型专利:一种轻型房屋结构的装配式板基础,专利号:ZL 2015 2 0808804.4
[13] 实用新型专利:一种轻型房屋结构的装配式楼板,专利号:ZL201620214119.3
[14] 实用新型专利:一种用于房屋的减震阻尼器,专利号:ZL201621414158.4
[15] 实用新型专利:一种用于房屋平行梁的减震阻尼器,专利号:ZL20162141459.9
[16] 实用新型专利:一种用于桥梁的减震阻尼器,专利号:ZL201621414218.2
[17] 软件著作权:重大建筑与桥梁结构的健康检测与检测系统
[18] 软件著作权:拱桥结构稳定计算与优化设计系统
[19] 软件著作权:基于CS架构的桥梁检测数据库信息管理系统
■ 科技奖励
[1] 复杂高层结构大震失效分析、评价、控制的关键技术及工程应用,教育部科技进步一等奖(与哈尔滨工业大学合作),2016年
[2] 拱结构稳定性及优化设计关键技术研究和应用,教育部科技进步二等奖,2017年
[3] 大型复杂结构的风效应与健康监测的关键技术及其应用,教育部科技进步二等奖,2011年
[4] 大跨屋盖结构风效应的关键技术及应用,广东省科技进步二等奖,2012年
[5] 无推力新型拱桥的研究与工程实践,广东省科技进步二等奖,2013年
[6] 拱桥承载能力及运营荷载限制方法研究与应用(广东省科技进步三等奖),2015年
[7] 拱结构稳定性与优化设计方法的研究及实践,广州市科技进步一等奖,2017年