科研成果
科研成果
当前位置: 首页 >> 科研成果

代表性科研成果

■  主要科研论文

[1] A.R. Liu, H.W. Lu, J.Y. Fu, et al. (2017). Analytical and experimental studies on out-of-plane dynamic instability of shallow circular arch based on parametric resonance. Nonlinear Dynamics, 2017, 87(1):677-694.

[2] A.R. Liu, Y.H. Huang, J.Y. Fu, et al. (2015). Experimental research on stable ultimate bearing capacity of leaning-type arch rib systems. Journal of Constructional Steel Research, 114:281-292.

[3] A. Liu, H.W. Lu, J.Y. Fu, et al. (2017). Lateral-torsional buckling of fixed circular arches having a thin-walled section under a central concentrated load. Thin-Walled Structures, 2017, 118(2017):46-55.

[4] A.R. Liu, C.H. Liu, J.Y. Fu, et al. (2017). A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables. International Journal of Structural Stability & Dynamics, 2017, 17(7):1750076.

[5] A.R. Liu, M.A. Bradford, Y.L. Pi. (2017) In-plane nonlinear multiple equilibria and switches of equilibria of pinned–fixed arches under an arbitrary radial concentrated load. Archive of Applied Mechanics, 1-20.

[6] A.R. Liu, Z.C. Yang, H.W. Lu, et al. (2017). Experimental and analytical investigation on the in-plane dynamic instability of arches owing to parametric resonance. Journal of Vibration & Control, (1):107754631772621.

[7] Y.Q. Huang, A.R. Liu, Y.L. Pi Y, et al. (2017). Assessment of lateral dynamic instability of columns under an arbitrary periodic axial load owing to parametric resonance. Journal of Sound & Vibration, 395(2017):272-293.

[8] H. Jiang, Z. Fang, A.R. Liu, et al. (2016). Interface shear behavior between high-strength precast girders and lightweight cast-in-place slabs. Construction & Building Materials, 128(2016):449-460.

[9] J. Deng, A.R. Liu A, Q. Yu, et al. (2016). Seismic performances of steel reinforced concrete bridge piers. Steel & Composite Structures, 2016, 21(3):661-677.

[10] H. Jiang, Y. Chen, A.R. Liu A, et al.(2016). Effect of high-strength concrete on shear behavior of dry joints in precast concrete segmental bridges. Steel & Composite Structures, 2016, 22(5):1019-1038.

[11] Y.L. Pi , M.A. Bradford, A.R. Liu. (2016). Nonlinear Equilibrium and Buckling of Fixed Shallow Arches Subjected to an Arbitrary Radial Concentrated Load. International Journal of Structural Stability & Dynamics, 17(8):1750082.

[12] J. Deng, A.R. Liu, P. Huang, et al. (2016). Interfacial mechanical behaviors of RC beams strengthened with FRP. Structural Engineering & Mechanics, 2016, 58(3):577-596.

[13] H. Jiang, Q. Cao, A.R. Liu A, et al. (2016). Flexural behavior of precast concrete segmental beams with hybrid tendons and dry joints. Construction & Building Materials, 110(2016):1-7.

[14] J. Deng, Z. Ma, A.R. Liu, et al. (2017). Seismic performance of reinforced concrete bridge columns subjected to combined stresses of compression, bending, shear, and torsion. Journal of Bridge Engineering, 22(11):04017099.

[15] J. Deng, Z. Ma, A.R. Liu, et al. (2017) Seismic performance of composite column with double plastic hinges. Composite Structures, 2017.

[16] Y.H. Huang, A.R. Liu, J.Y. Fu, et al. (2017).Experimental and numerical investigations of the structural behavior of CFST trusses with interfacial imperfection, Journal of Constructional Steel Research, 2017.

[17] Z. F. Zhang, J. W. Pan, J. Y. Fu, et al. (2017). Optimization of long span portal frames using spatially distributed surrogates. Steel and Composite Structures. 24(2):227-237.

[18] J. Y. Fu, Q. X. Zheng, J. R. Wu, et al. (2016).Wind induced inter-story drift analysis and equivalent static wind load for multiple targets of tall buildings. The Structural Design of Tall Special Buildings. 25(6):297-321.

[19] A. Xu, W. X. Sun, R. H. Zhao, et al. (2016). Lateral drift constrained structural optimization of an actual supertall building acted by wind load.The Structural Design of Tall Special Buildings. (published online)

[20] J. Y. Fu, Q. X. Zheng, J. R. Wu, et al. (2015).Full-scale tests of wind effects on a long span roof structure. Earthquake Engineering and Engineering Vibration. 14(2):361-372.

[21] T. Deng, X. F. Yu, Z. N. Xie (2015). Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings. Wind and Structures. 21(3):331-352.

[22] A. Xu, Z.N. Xie, M. Gu, et al. (2015).Amplitude dependency of damping of tall structures by the random decrement technique. Wind and Structures. 21(2):159-182.

[23] J. Y. Fu, Y. Gao, J. R. Wu, et al. (2014). Wind effects on a long span steel roof structure: numerical simulation and equivalent static wind loads. Journal of Vibroengineering. 17(5):2572-2590.

[24] A. Xu, J. R. Wu, R. H. Zhao (2014). Wavelet-transform-based damping identification of a super-tall building under strong wind loads. Wind and Structures. 19(4):353-370.

[25] A. Xu,Z. N. Xie,J. Y. Fu,et al. (2014).Evaluation of wind loads on super-tall buildings from field-measured wind-induced acceleration response. Structural Design of Tall and Special Buildings. 23(9):641-663.

[26] Y. Q. Huang, L. Zhong, J. Y. Fu (2014). Wind-induced vibration and equivalent wind load of double-layer cylindrical latticed shells. Journal of Vibroengineering. 16(2):1063-1078.

[27] J. Y. Fu, J. R. Wu, A. Xu, et al. (2012).Full-scale measurements of wind effects on Guangzhou West Tower. Engineering Strucutures. 35(1):120-139.

[28] M. Ye; X.X Chen, et al. (2016). Time variant natural frequencies of a roadway bridge under Stochastic vehicle flow. Journal of Vibroengineering. 18(8):64-77.

[29] M. Ye, B.X. Cao, Y.L. Pi,et al.(2015). Field measurement, analysis and protection for the vibratin of an acient ruin induced railway. Journal of VIbroengineering, 17(4): 2049-2065Mao Ye, Yin pei Pia and Min Ren . Seismic Behavior of Reinforced Concrete Column with Distributed-Steel Bar: Experimental and Nonlinear FE Analysis. Structural Engineering and Mechanics. 2013,47(6 ):741-756

[30] R.H. Zhao, A. Xu, W. X. Sun,et al.(2017). Model shape correction method for high-frequency force balance technique. Journal of Vibroengineering. 19 (3): 1665-1679.

[31] Y.H. Huang, J.Y. Fu, R.H. Wang,et al.(2017)New method for identifying internal forces of hangers based on form-finding theory of suspension cable. ASCE-Journal of Bridge Engineering. 73 (8):803-813.

[32] Y. H. Huang, J.Y Fu, R. H Wang,et al.(2015). Unified Practical Formulas for Vibration-Based Method of Cable Tension Estimation. Advances in Structural Engineering.18(3):405-422.

[33] Y. H. Huang, J.Y. Fu, R.H. Wang,et al. (2014), Practical formula to calculate tension of vertical cable with hinged-fixed conditions based on vibration method, Journal of Vibroengineering. 16(2):997-1009.

[34] Y. H. Huang,R.H. Wang, S.B. Zhang, et al.(2013). Experimental Study on the Welding Residual Stresses of Integral Joint Using Full-Scale Joint Model of a Steel Truss Bridge, Advances in Structural Engineering, 16(10):1719-1727

[35] Y.H. Huang, R.H. Wang, J.H. Zou, et al. (2010). Finite element analysis and experimental study on HSFG connections in steel bridges, Journal of Constructional Steel Research, 66(6):803-815.

[36] R. Rao, Z.F. Zhang, Q. Gan, et al. (2015). A proposed model for creep in mass concrete under variable ambient conditions, Materials Research Innovations, 19(s2):174-180

[37] Y. Ma, G. Ye, J. Hu. (2017) Micro-mechanical properties of alkali-activated fly ash evaluated by nanoindentation. Construction and Building Materials, 147: 407-416.

[38] Y. Ma, G. Ye. (2015) The shrinkage of alkali activated fly ash. Cement and Concrete Research, 68: 75-82.

 

■  知识产权

[1] 国家发明专利:一种中承式单索面拱桥的加固结构,专利号:ZL 201110381853[1].0

[2] 国家发明专利:一种单索面斜拉桥的加固结构,专利号:ZL 201110381875.7

[3] 国家发明专利:一种制备上下电极式导电混凝土板用电极网张拉装置,专利号:ZL 201410718482.4

[4] 国家发明专利:制备室内采暖用上下奠基石导电混凝土板的装置及方法,专利号:ZL201410717985.X

[5] 国家发明专利:含有钢管混凝土柱的高层建筑框架结构优化设计方法专利号:ZL201510268993.5

[6] 国家发明专利:一种轻型房屋结构的装配式梁柱连接方法,专利号:ZL201610156040.4

[7] 国家发明专利:一种轻型房屋结构的装配式板基础,专利号:ZL201510676977.X

[8] 实用新型专利:制备室内采暖用上下电极式电极式导电混凝土板的装置,专利号:ZL201420743217.7

[9] 国家发明专利:隔震系统,专利号:ZL 201510677070.5

[10] 国家发明专利:隔震支座,专利号:ZL 201510395725.X

[11]美国发明专利:support for providing in-plane or out-of-plane elastic torsional restraint and experimental device inluding same,专利号:US10837875B1

[12]美国发明专利:Binocular robot for bridge underwater detectiion based on 5G communication,专利号:US11201991B1

[13]美国发明专利:Device carrying platform based on underwater robot,专利号:US11492085B2

[14]美国发明专利:Flexible underwater robot, control method and device ,专利号:US11352110B1

[15]美国发明专利:Method, system, and apparatus for predicting residual strength of composite material after impact, and medium,专利号:US11403446B1

[16]美国发明专利:Modular mechanical arm for adaptive cleaning and damage detection of underwater pile foundation,专利号:US11666949B1

[17]美国发明专利:Underwater robot based on variable-size auxilary drive and control methoid thereof,专利号:US11667363B2

[18]美国发明专利:Modular Underwater Robot And Control Method Therefor,专利号:US11753127B1

[19]美国发明专利:Underwater robot based on variable-size auxilary drive and control methoid thereof,专利号:US11667363B2

[20]美国发明专利:Modular Underwater Robot And Control Method Therefor,专利号:US11753127B1

[21]美国发明专利:Modular mechanical arm for adaptive cleaning and damage detection of underwater pile foundation,专利号:US11666949B1

[22]日本发明专利:橋·トンネルに対する高さ制限超過車両の街突を防止する遮断ロ一ブ式柔軟性街突防止装置,专利号:6786142

[23]日本发明专利:重ね梁の性能を上げる構造,专利号:6877774

[24]日本发明专利:コンクリ一トスラプと鋼梁の接続構造及び装着方法,专利号:6852935

[25]日本发明专利:複合材料によるア一チ非線形振動エネルギ一収集器,专利号:6875032

[26]日本发明专利:電磁複合振動工ネルギ一収集器,专利号:6875713

[27]日本发明专利:単振り子一粘性液体連合ダンバ一,专利号:6871635

[28]日本发明专利:平行組立ダプルア一チ面外不安定の実験負荷装置及び方法,专利号:6856260

[29]日本发明专利:動的進化率及び適応グリッドに基っくBESO トポロジ一最適化方法,专利号:6856286

[30]日本发明专利:一种摇摆结构(円環揺動メカニズムに基づく揺動壁),专利号:7005075

[31]日本发明专利:同調フレーム構造(一种调谐框架结构),专利号:7018236

[32]日本发明专利:水中ロボットに基づく装置搭載プラットフォーム,专利号:7044336

[33]日本发明专利:連続体トポロジ一最適化結果を棒システム構造に変換する方法,专利号:7043106

[34]日本发明专利:渦励共振複合発電装置,专利号:7083546

[35]日本发明专利:バイオニックガル翼に基っいた多安定振動工ネルギ一収集装置,专利号:7288718

[36]日本发明专利:建築硬化材料及びその製造方法及び応用,专利号:7349169

[37] 软件著作权:重大建筑与桥梁结构的健康检测与检测系统

[38] 软件著作权:拱桥结构稳定计算与优化设计系统

[39] 软件著作权:基于CS架构的桥梁检测数据库信息管理系统

 

■  科技奖励

[1] 复杂高层结构大震失效分析、评价、控制的关键技术及工程应用,教育部科技进步一等奖(与哈尔滨工业大学合作),2016年

[2] 拱结构稳定性及优化设计关键技术研究和应用,教育部科技进步二等奖,2017年

[3] 大型复杂结构的风效应与健康监测的关键技术及其应用,教育部科技进步二等奖,2011年

[4] 大跨屋盖结构风效应的关键技术及应用,广东省科技进步二等奖,2012年

[5] 无推力新型拱桥的研究与工程实践,广东省科技进步二等奖,2013年

[6] 拱桥承载能力及运营荷载限制方法研究与应用(广东省科技进步三等奖),2015年

[7] 拱结构稳定性与优化设计方法的研究及实践,广州市科技进步一等奖,2017年

[8] 基于固废资源化利用的绿色低碳混凝土关键技术与应用,广东省科技进步二等奖,2020年

[9] 超高层建筑结构风效应的关键技术研究及其应用,广东省科技进步一等奖,2023年